Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 230
Filter
1.
Article in English | MEDLINE | ID: mdl-38747462

ABSTRACT

Soft actuators possessing notable mechanical deformations, high sensitivity, and fast response speed play a crucial role in various applications, such as artificial muscles, soft robots, and intelligent devices. In this study, a smart humidity-driven actuator was successfully fabricated by utilizing MXene/cellulose nanofiber (CNF)/LiCl (MCL) through vacuum-assisted filtration with fast response speed and high sensitivity. Utilizing the excellent humidity responsiveness of MXene/CNF and the robust hygroscopicity of LiCl, the synergistic effect of these materials enhances the hygroscopic properties and response speed of the actuator. The MCL actuator demonstrates excellent actuation performance, fast deformation, and reliable cyclic stability. To illustrate the extensive potential of the soft actuator, a range of applications, from bionic devices to soft grippers and crawling actuators, are showcased. Remarkably, the crawling actuator demonstrates sustained crawling motion without necessitating a humidity switch, relying on the humidity gradient from water droplets, and exhibits spontaneous directional motions within a certain range, which makes it a promising prospect in the field of soft robotics.

2.
Angew Chem Int Ed Engl ; : e202403521, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38654696

ABSTRACT

Lithium-oxygen batteries possess an extremely high theoretical energy density, rendering them a prime candidate for next-generation secondary batteries. However, they still face multiple problems such as huge charge polarization and poor cycle life, which lay a significant gap between laboratory research and commercial applications. In this work, we adapt 15-crown-5 ether (C15) as solvent to regulate the generation of discharge products in lithium-oxygen batteries. The coronal structure endows C15 with strong affinity to Li+, firmly stabilizes the intermediate LiO2 and discharge product Li2O2. Thus, the crystalline Li2O2 is amorphized into easily decomposable amorphous products. The lithium-oxygen batteries assembled with 0.5 M C15 electrolyte show an increased discharge capacity from 4.0 mAh cm-2 to 5.7 mAh cm-2 and a low charge overpotential of 0.88 V during the whole lifespan at 0.05 mA cm-2. The batteries with 1 M C15 electrolyte can cycle stably for 140 cycles. Furthermore, the amorphous characteristic of Li2O2 product is preserved when matched with redox mediators such as LiI, with the charge polarization further decreasing to 0.74 V over a cycle life of 190 cycles. This provides new possibilities for electrolyte design to promote Li2O2 amorphization and reduce charge overpotential in lithium-oxygen batteries.

3.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167190, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38657912

ABSTRACT

Cervical cancer cells possess high levels of reactive oxygen species (ROS); thus, increasing oxidative stress above the toxicity threshold to induce cell death is a promising chemotherapeutic strategy. However, the underlying mechanisms of cell death are elusive, and efficacy and toxicity issues remain. Within DNA, 8-oxo-7,8-dihydroguanine (8-oxoG) is the most frequent base lesion repaired by 8-oxoguanine glycosylase 1 (OGG1)-initiated base excision repair. Cancer cells also express high levels of MutT homolog 1 (MTH1), which prevents DNA replication-induced incorporation of 8-oxoG into the genome by hydrolyzing 8-oxo-7,8-dihydro-2'-deoxyguanosine 5'-triphosphate (8-oxo-dGTP). Here, we revealed that ROS-inducing agents triggered cervical cancer to undergo parthanatos, which was mainly induced by massive DNA strand breaks resulting from overwhelming 8-oxoG excision by OGG1. Furthermore, the MTH1 inhibitor synergized with a relatively low dose of ROS-inducing agents by enhancing 8-oxoG loading in the DNA. In vivo, this drug combination suppressed the growth of tumor xenografts, and this inhibitory effect was significantly decreased in the absence of OGG1. Hence, the present study highlights the roles of base repair enzymes in cell death induction and suggests that the combination of lower doses of ROS-inducing agents with MTH1 inhibitors may be a more selective and safer strategy for cervical cancer chemotherapy.

4.
Emerg Microbes Infect ; : 2348525, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38661428

ABSTRACT

OBJECTIVE: To assess the clinical applicability of a semi-quantitative luciferase immunosorbent assay (LISA) for detecting antibodies against Treponema pallidum antigens TP0171 (TP15), TP0435 (TP17), and TP0574 (TP47) in diagnosing and monitoring syphilis. METHOD: LISA for detection of anti-TP15, TP17, and TP47 antibodies was developed and evaluated for syphilis diagnosis using 261 serum samples (161 syphilis, 100 non-syphilis). 90 serial serum samples from six syphilis rabbit models (three treated, three untreated) and 110 paired serum samples from 55 syphilis patients were used to assess treatment effects by utilizing TRUST as reference. RESULTS: Compared to TPPA, LISA-TP15, LISA-TP17, and LISA-TP47 showed sensitivity of 91.9%, 96.9%, and 98.8%, specificity of 99%, 99%, and 98%, and AUC of 0.971, 0.992, and 0.995, respectively, in diagnosing syphilis. Strong correlations (rs = 0.89-0.93) with TPPA were observed. In serial serum samples from rabbit models, significant difference in the relative light unit (RLU) were observed between the treatment and control group for LISA-TP17 (days 31-51) and LISA-TP47 (days 41). In paired serum samples form syphilis patients, TRUST titers and the RLU of LISA-TP15, LISA-TP17, and LISA-TP47 decreased post treatment (P < 0.001). When TRUST titers decreased by 0, 2, 4, or ≥8-folds, the RLU decreased by 17.53%, 31.34%, 48.62%, and 72.79% for LISA-TP15; 8.84%, 17.00%, 28.37%, and 50.57% for LISA-TP17; 22.25%, 29.79%, 51.75%, and 70.28% for LISA-TP47, respectively. CONCLUSION: Semi-quantitative LISA performs well for syphilis diagnosis while LISA-TP17 is more effective for monitoring syphilis treatment in rabbit models and clinical patients.

5.
Viruses ; 16(4)2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38675833

ABSTRACT

One of the major functions of the accessory protein Vif of human immunodeficiency virus type 1 (HIV-1) is to induce the degradation of APOBEC3 (A3) family proteins by recruiting a Cullin5-ElonginB/C-CBFß E3 ubiquitin ligase complex to facilitate viral replication. Therefore, the interactions between Vif and the E3 complex proteins are promising targets for the development of novel anti-HIV-1 drugs. Here, peptides are designed for the Vif-CBFß interaction based on the sequences of Vif mutants with higher affinity for CBFß screened by a yeast surface display platform. We identified two peptides, VMP-63 and VMP-108, that could reduce the infectivity of HIV-1 produced from A3G-positive cells with IC50 values of 49.4 µM and 55.1 µM, respectively. They protected intracellular A3G from Vif-mediated degradation in HEK293T cells, consequently increasing A3G encapsulation into the progeny virions. The peptides could rapidly enter cells after addition to HEK293T cells and competitively inhibit the binding of Vif to CBFß. Homology modeling analysis demonstrated the binding advantages of VMP-63 and VMP-108 with CBFß over their corresponding wild-type peptides. However, only VMP-108 effectively restricted long-term HIV-1 replication and protected A3 functions in non-permissive T lymphocytes. Our findings suggest that competitive Vif-derived peptides targeting the Vif-CBFß interaction are promising for the development of novel therapeutic strategies for acquired immune deficiency syndrome.


Subject(s)
Anti-HIV Agents , Core Binding Factor beta Subunit , HIV-1 , Peptides , Protein Binding , vif Gene Products, Human Immunodeficiency Virus , vif Gene Products, Human Immunodeficiency Virus/metabolism , vif Gene Products, Human Immunodeficiency Virus/genetics , Humans , HIV-1/drug effects , HIV-1/physiology , HEK293 Cells , Core Binding Factor beta Subunit/metabolism , Peptides/pharmacology , Peptides/metabolism , Peptides/chemistry , Anti-HIV Agents/pharmacology , Virus Replication/drug effects , Drug Design , HIV Infections/virology , HIV Infections/drug therapy , HIV Infections/metabolism
6.
J Foot Ankle Res ; 17(2): e12011, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38635458

ABSTRACT

OBJECTIVE: This systematic review aimed to analyse the effect of early weight bearing versus late weight bearing on rehabilitation outcomes after ankle fractures, which primarily include ankle function scores, time to return to work/daily life and complication rates. METHODS: The China National Knowledge Infrastructure, Wanfang Data Knowledge Service Platform, China Science and Technology Journal, Web of Science, PubMed, Embase and Cochrane Library databases were searched. The focus was on identifying randomised controlled trials centred on early weight-bearing interventions for post-operative ankle fracture rehabilitation. All databases were searched for eligible studies published within the period from database inception to 20 June 2023. The eligible studies were screened according to the inclusion criteria. Study quality was evaluated using the methodology recommended by the Cochrane Handbook for the Systematic Evaluation of Interventions. Two authors independently performed the literature search and data extraction. Eligible studies were subjected to meta-analyses using Review Manager 5.3. Based on the time points at which post-operative ankle function was reported in the studies included in this paper, we decided to perform a meta-analysis of ankle function scores at 6 weeks post-operatively, 12 weeks post-operatively, 24-26 weeks post-operatively and 1 year post-operatively. RESULTS: A total of 11 papers, comprising 862 patients, were included. Meta-analysis indicated that patients receiving early weight-bearing interventions, which referred to weight-bearing for 6 weeks post-operatively, experienced enhancements in ankle function scores (Olerud-Molander score, AOFAS score or Baird-Jackson score) at various post-operative milestones: 6 weeks (SMD = 0.69, 95% CI: 0.49-0.88 and p < 0.01), 12 weeks (SMD = 0.57, 95% CI: 0.22-0.92 and p < 0.01) and the 24-26 weeks range (SMD = 0.52, 95% CI: 0.20-0.85 and p < 0.01). The results of subgroup analyses revealed that the effects of early weight-bearing interventions were influenced by ankle range-of-motion exercises. Additionally, early weight bearing allows patients to return to daily life and work earlier, which was evaluated by time when they resumed their preinjury activities (MD = -2.74, 95% CI: -3.46 to -2.02 and p < 0.01), with no distinct elevation in the incidence of complications (RR = 1.49, 95% CI: 0.85-2.61 and p > 0.05). CONCLUSION: The results showed that early weight bearing is effective in improving ankle function among post-operative ankle fracture patients and allows patients to return to daily life earlier. Significantly, the safety profile of early weight bearing remains favourable, with no higher risk of complications than late weight bearing.


Subject(s)
Ankle Fractures , Humans , Ankle Fractures/surgery , Treatment Outcome , China , Weight-Bearing , Randomized Controlled Trials as Topic
7.
J Anim Sci ; 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38551023

ABSTRACT

Alternative splicing (AS) plays an important role in the co-transcription and post-transcriptional regulation of gene expression during mammalian spermatogenesis. The dzo is the male F1 offspring of an interspecific hybrid between a domestic bull (Bos taurus ♂) and a yak (Bos grunniens ♀) which exhibits male sterility. This study aimed to identify the testis-specific genes and AS associated with hybrid male sterility in dzo. The iDEP90 program and rMATS software were used to identify the differentially expressed genes (DEG) and differential alternative splicing genes (DSG) based on RNA-seq data from the liver (n=9) and testis (n=6) tissues of domestic cattle, yak, and dzo. Splicing factors (SF) were obtained from the AmiGO2 and the NCBI databases, and Pearson correlation analysis was performed on the differentially expressed SFs and DSGs. We focused on the testis-specific DEGs and DSGs between dzo and cattle and yak. Among the top 3000 genes with the most significant variations between these 15 samples, a large number of genes showed testis-specific expression involved with spermatogenesis. Cluster analysis showed that the expression levels of these testis-specific genes were dysregulated during mitosis with a burst downregulation during the pachynema spermatocyte stage. The occurrence of AS events in the testis was about 2.5 fold greater than in the liver, with exon skipping being the major AS event (81.89~82.73%). A total of 74 DSGs were specifically expressed in the testis and were significantly enriched during meiosis I, synapsis, and in the piRNA biosynthesis pathways. Notably, STAG3 and DDX4 were of the exon skipping type, and DMC1 was a mutually exclusive exon. A total of 36 SFs were significantly different in dzo testis, compared with cattle and yak. DDX4, SUGP1, and EFTUD2 were potential SFs leading to abnormal AS of testis-specific genes in dzo. These results show that AS of testis-specific genes can affect synapsis and the piRNA biosynthetic processes in dzo, which may be important factors associated with hybrid male sterility in dzo.

9.
Phys Chem Chem Phys ; 26(15): 11618-11630, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38546226

ABSTRACT

In this work, CuM/CeO2 (M = Mn, Fe, Co, Ni, and Zr) catalysts with a low Cu content of 1 wt% were purposely designed and prepared using the co-impregnation method. The samples were characterized using various techniques (TG-DTA, XRD, N2-adsorption/desorption measurements, H2-TPR, XPS and Raman spectroscopy) and CO preferential oxidation (CO-Prox) under H2/CO2-rich conditions was performed. The results have shown that enhanced catalytic performance was achieved upon the introduction of Mn, Co and Ni, and little impact was observed with Zr doping, but Fe showed a negative effect, as compared with the Cu/CeO2 catalyst. Characterization data revealed that the M doping strongly changed the surface composition, revealing the decreased Cu/Ce ratios on the surface, which could be accounted for by the formation of more M/Cu-O-Ce solid solution, or strong Cu-M interactions. When Mn was used, the obtained CuMn/CeO2 catalyst revealed the highest concentration of the oxygen vacancies and Ce3+ ions, which could be correlated well with its superior catalytic performance. Compared with the Cu/CeO2 catalyst, the CO conversion rate increased by 24.7% at a low temperature of 90 °C over the CuMn/CeO2 catalyst. At 130 °C, the maximum CO conversion was 94.7% and the CO2 selectivity was 78.9%. Conversely, the Fe doped Cu/CeO2 catalyst demonstrated the poorest catalytic activity, which was due to the blockage effect of Fe species on Cu showing a high Fe/Cu ratio of 1.9 on the surface.

10.
Inorg Chem ; 63(13): 6033-6041, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38500387

ABSTRACT

We report the synthesis and structural characterization of a 2D metal-organic framework with AB-packing layers, [Co2(pybz)2(CH3COO)2]·DMF (Co2, pybz= 4-(4-pyridyl)benzoate), containing a stable (4,4)-grid network fabricated by paddle-wheel nodes, ditopic pybz, and acetate ligands. After removal of the guest, the layer structure is retained but reorganized into an ABCD packing mode in the activated phase (Co2a). Consequently, the intralayer square windows (7.2 × 5.0 Å2) close, while the interlayer separation is decreased slightly from 3.69 to 3.45 Å, leaving a narrow gap. Importantly, the dangling methyl group of the acetate with H-bonds to the adjacent layers and also the well-distributed π-π interactions between the aromatic rings of neighboring layers facilitate the structural stability. These weak supramolecular interactions further allow for favorable dynamic exfoliation of the layers, which promotes efficient adsorption of C2H2 (41.6 cm3 g-1) over CO2 with an adsorption ratio of 6.3 (0.5 bar, 298 K). The effective separation performance of equimolar C2H2/CO2 was verified by cycling breakthrough experiments and was even tolerable to moisture (R.H = 52%). DFT calculations, in situ PXRD, and PDF characterization reveal that the favorable retention of C2H2 rather than that of CO2 is due to its H-bond formation with the paddle-wheel oxygen atoms that triggers the increase in interlayer separation during C2H2 adsorption.

11.
ACS Appl Mater Interfaces ; 16(13): 16351-16362, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38515323

ABSTRACT

Poly(ethylene oxide) (PEO)-based electrolytes have been extensively studied for all-solid-state lithium-metal batteries due to their excellent film-forming capabilities and low cost. However, the limited ionic conductivity and poor mechanical strength of the PEO-based electrolytes cannot prevent the growth of undesirable lithium dendrites, leading to the failure of batteries. Metal-organic frameworks (MOFs) are functional materials with a periodic porous structure that can improve the electrochemical performance of PEO-based electrolytes. However, the enhancement effect of MOFs with different metal centers and the interaction mechanism with PEO remain unclear. Herein, MOF-74s with Cu or Ni centers are prepared and used as fillers of PEO-based electrolytes. Adding 15 wt % of Cu-MOF-74 to the PEO-based electrolyte (15%Cu-MOF/P-Li) effectively improves the ionic conductivity, lithium transference number, and mechanical strength of the PEO-based electrolyte simultaneously. Furthermore, the ordered pore channels of Cu-MOF-74 provide uniform Li-ion transport pathways, facilitating homogeneous Li+ deposition. As a result, the lithium symmetric cell with 15%Cu-MOF/P-Li shows stable cycles for 1080 h at 0.1 mA cm-2 and 0.1 mAh cm-2, and the Li | 15% Cu-MOF/P-Li | LFP full cell exhibits a long cycle life up to 200 cycles at 60 °C and 0.5 C, with a capacity retention rate of 89.7%.

12.
Pathol Oncol Res ; 30: 1611595, 2024.
Article in English | MEDLINE | ID: mdl-38450329

ABSTRACT

Objectives: Summarize the progress and hot topic evolution of non-coding RNAs (ncRNAs) research in esophageal squamous cell carcinoma (ESCC) in recent years and predict future research directions. Methods: Relevant articles from the Web of Science until 31 October 2023 were obtained. Bibliometric analysis of included articles was performed using software (VOSviewer, CiteSpace, and Bibliometrix). The volume and citation of publications, as well as the country, institution, author, journal, keywords of the articles were used as variables to analyze the research trends and hot spot evolution. Results: 1,118 literature from 2008 to 2023 were retrieved from database, with 25 countries/regions, 793 institutions, 5,426 authors, 261 journals involved. Global cooperation was centered on China, Japan, and the United States. Zhengzhou University, an institution from China, had the highest publication. The most prolific author was Guo Wei, and the most prolific journal was Oncology Letters. Analysis of keywords revealed that the research in this field revolved around the role of ncRNAs in the occurrence, development, diagnosis, treatment, and prognosis of ESCC, mainly including micro RNAs, long non-coding RNAs, and then circular RNAs. Conclusion: Overall, research on ncRNAs in ESCC remains strong. Previous research has mainly focused on the basic research, with a focus on the mechanism of ncRNAs in the occurrence, development, diagnosis, treatment, and prognosis of ESCC. Combining current research with emerging disciplines to further explore its mechanisms of action or shifting the focus of research from preclinical research to clinical research based on diagnosis, treatment, and prognosis, will be the main breakthrough in this field in the future.


Subject(s)
Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , MicroRNAs , Humans , Bibliometrics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , RNA, Untranslated
13.
Environ Sci Pollut Res Int ; 31(16): 24412-24424, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38441738

ABSTRACT

The crux of groundwater protection lies in a profound understanding of the sources of pollutants and their impacts on human health. This study selected 47 groundwater samples from the Fengshui mining area in central Shandong Province, China, employing advanced hydrogeochemical techniques, positive matrix factorization (PMF), and Monte Carlo analysis methods, aimed at unveiling the characteristics, origins, and health risks of water pollutants. The results indicated that the majority of samples exhibited a slightly alkaline nature. Notably, the concentrations of fluoride (F-) and nitrate (NO3-) exceeded China's safety standards in 40.43% and 23.40% of the samples, respectively. Moreover, a water quality index (WQI) below 50 was observed in approximately 68.09% of the sites, suggesting that the water quality in these areas generally met acceptable levels. However, regions with higher WQI values were predominantly located in the northern and southern parts of the mining area. PMF analysis revealed that regional geological and industrial activities were the primary factors affecting water quality, followed by mining discharges, fundamental geological and agricultural processes, and leachate enrichment activities. The health risk assessment highlighted the heightened sensitivity of the youth demographic to fluoride, with a more pronounced non-carcinogenic risk compared to nitrate, affecting about 31.89% of the youth population. Hence, it is imperative for local authorities and relevant departments to take prompt actions to remediate groundwater contamination to minimize public health risks.


Subject(s)
Groundwater , Water Pollutants, Chemical , Adolescent , Humans , Environmental Monitoring/methods , Nitrates/analysis , Fluorides/analysis , Water Pollutants, Chemical/analysis , Groundwater/analysis , Water Quality , Organic Chemicals , Risk Assessment , China
14.
Nat Commun ; 15(1): 1329, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38351311

ABSTRACT

Pneumatic artificial muscles can move continuously under the power support of air pumps, and their flexibility also provides the possibility for applications in complex environments. However, in order to achieve operation in confined spaces, the miniaturization of artificial muscles becomes crucial. Since external attachment devices greatly hinder the miniaturization and use of artificial muscles, we propose a light-driven approach to get rid of these limitations. In this study, we report a miniaturized fiber-reinforced artificial muscle based on mold editing, capable of bending and axial elongation using gas-liquid conversion in visible light. The minimum volume of the artificial muscle prepared using this method was 15.7 mm3 (d = 2 mm, l = 5 mm), which was smaller than those of other fiber-reinforced pneumatic actuators. This research can promote the development of non-tethered pneumatic actuators for rescue and exploration, and create the possibility of miniaturization of actuators.

15.
J Alzheimers Dis ; 98(2): 505-517, 2024.
Article in English | MEDLINE | ID: mdl-38393908

ABSTRACT

Background: The link between allergic diseases and dementia remains controversial, and the genetic causality of this link is unclear. Objective: This study investigated the causal relationship between allergic diseases and dementia using univariate and multivariate Mendelian randomization (MR) methods. Methods: We selected genome-wide association studies including 66,645 patients with allergic diseases and 12,281 patients with dementia, with statistical datasets derived from the FinnGen Consortium of European origin. After a rigorous screening process for single nucleotide polymorphisms to eliminate confounding effects, MR estimation was performed mainly using the inverse variance weighting method and the MR-Egger method. Sensitivity analyses were performed using Cochran's Q test, MR-PRESSO test, MR Pleiotropy residuals and leave-one-out analysis. Results: Univariate and multivariate MR together demonstrated a causal relationship between atopic dermatitis and reduced vascular dementia (VaD) risk (OR = 0.89, 95% CI: 0.81-0.99, p = 0.031; OR = 0.85, 95% CI: 0.76-0.95, p = 0.003). MVMR confirmed asthma was associated with a reduction in the risk of Alzheimer's disease (AD) (OR = 0.82, 95% CI: 0.71-0.94, p = 0.005) and may be associated with a reduction in the risk of VaD (OR = 0.80, 95% CI: 0.65-0.99, p = 0.042); allergic rhinitis may be causally associated with an increased risk of AD (OR = 1.16, 95% CI: 1.00-1.35, p = 0.046) and VaD (OR = 1.29, 95% CI: 1.03-1.62, p = 0.027). In sensitivity analyses, these findings were reliable. Conclusions: MR methods have only demonstrated that allergic rhinitis dementia is associated with an increased risk of developing dementia. Previously observed associations between other allergic diseases and dementia may be influenced by comorbidities and confounding factors rather than causality.


Subject(s)
Alzheimer Disease , Asthma , Dementia, Vascular , Rhinitis, Allergic , Humans , Genome-Wide Association Study , Mendelian Randomization Analysis
16.
Int Immunopharmacol ; 129: 111486, 2024 Mar 10.
Article in English | MEDLINE | ID: mdl-38326121

ABSTRACT

Acute lung injury (ALI) is a severe and potentially fatal respiratory condition with limited treatment options. The pathological evolution of ALI is driven by persistent inflammation, destruction of the pulmonary vascular barrier and oxidative stress. Evidence from prior investigations has identified 5α-androst-3ß,5α,6ß-Triol (TRIOL), a synthetic analogue of the naturally occurring neuroprotective compound cholestane-3ß,5α,6ß-triol, possesses notable anti-inflammatory and antioxidative properties. However, the precise effects of TRIOL on alleviating lung injury along with the mechanisms, have remained largely unexplored. Here, TRIOL exhibited pronounced inhibitory actions on lipopolysaccharide (LPS)-induced inflammation and oxidative stress damage in both lung epithelial and endothelial cells. This protective effect is achieved by its ability to mitigate oxidative stress and restrain the inflammatory cascade orchestrated by nuclear factor-kappa B (NF-κB), thereby preserving the integrity of the pulmonary epithelial barrier. We further validated that TRIOL can attenuate LPS-induced lung injury in rats and mice by reducing inflammatory cell infiltration and improving pulmonary edema. Furthermore, TRIOL decreased the pro-inflammatory factors and increased of anti-inflammatory factors induced by LPS. In conclusion, our study presents TRIOL as a promising novel candidate for the treatment of ALI.


Subject(s)
Acute Lung Injury , Endothelial Cells , Rats , Mice , Animals , Lipopolysaccharides/pharmacology , Steroids/pharmacology , Oxidative Stress , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Inflammation/drug therapy , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/pharmacology
17.
Nano Lett ; 24(9): 2870-2875, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38407933

ABSTRACT

Leveraging its ultrahigh carrier mobility, zero-bandgap linear dispersion, and extremely short response time, graphene exhibits remarkable potential in ultrafast broad-band photodetection. Nonetheless, the inherently low responsivity of graphene photodetectors, due to the low photogenerated carrier density, significantly impedes the development of practical devices. In this study, we present an improved photoresponse within a graphene-hexagonal boron nitride-graphene vertical tunnel junction device, where the crystallographic orientation of the two graphene electrodes is aligned. Through meticulous device structure design and the adjustment of bias and gate voltages, we observe a 2 orders of magnitude increase in tunneling photocurrent, which is attributed to the momentum-conserving resonant electron tunneling. The enhanced external photoresponsivity is evident across a wide temperature and spectral range and achieves 0.7 A/W for visible light excitation. This characteristic, coupled with the device's negative differential conductance, suggests a novel avenue for highly efficient photodetection and high-frequency, logic-based optoelectronics using van der Waals heterostructures.

18.
Phys Chem Chem Phys ; 26(9): 7783-7793, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38375586

ABSTRACT

The study of active systems, especially in the presence of a chemical background field, is garnering significant attention. Traditionally, the self-propelled velocity of active colloids was assumed to be constant, independent of the local density of colloids. In this work, we introduce a chemotactic active system that features quorum sensing (QS), wherein particles act as chemorepellents. Interestingly, these particles lose their activity in regions of high local particle density. Our findings reveal that QS leads to a transition from an oscillatory colloidal wave to a Turing-like pattern, with the observation of an intermediate state. With the variation of the sensing threshold, both the mean oscillation frequency of the system and the number of clusters exhibit non-monotonic dependence. Furthermore, the QS-induced pattern differs markedly from systems without QS, primarily due to the competitive interplay between diffusion and chemotaxis. The dynamics of this phenomenon are explained using a coarse-grained mean field model.

19.
Genes (Basel) ; 15(2)2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38397234

ABSTRACT

Third-generation sequencing technology has found widespread application in the genomic, transcriptomic, and epigenetic research of both human and livestock genetics. This technology offers significant advantages in the sequencing of complex genomic regions, the identification of intricate structural variations, and the production of high-quality genomes. Its attributes, including long sequencing reads, obviation of PCR amplification, and direct determination of DNA/RNA, contribute to its efficacy. This review presents a comprehensive overview of third-generation sequencing technologies, exemplified by single-molecule real-time sequencing (SMRT) and Oxford Nanopore Technology (ONT). Emphasizing the research advancements in livestock genomics, the review delves into genome assembly, structural variation detection, transcriptome sequencing, and epigenetic investigations enabled by third-generation sequencing. A comprehensive analysis is conducted on the application and potential challenges of third-generation sequencing technology for genome detection in livestock. Beyond providing valuable insights into genome structure analysis and the identification of rare genes in livestock, the review ventures into an exploration of the genetic mechanisms underpinning exemplary traits. This review not only contributes to our understanding of the genomic landscape in livestock but also provides fresh perspectives for the advancement of research in this domain.


Subject(s)
High-Throughput Nucleotide Sequencing , Livestock , Animals , Humans , Livestock/genetics , Sequence Analysis, DNA , Genome/genetics , Genomics
20.
Int J Mol Sci ; 25(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38339158

ABSTRACT

With the advent of cancer immunotherapy, there is a growing interest in vaccine development as a means to activate the cellular immune system against cancer. Despite the promise of DNA vaccines in this regard, their effectiveness is hindered by poor immunogenicity, leading to modest therapeutic outcomes across various cancers. The role of Type 1 conventional dendritic cells (cDC1), capable of cross-presenting vaccine antigens to activate CD8+T cells, emerges as crucial for the antitumor function of DNA vaccines. To address the limitations of DNA vaccines, a promising approach involves targeting antigens to cDC1 through the fusion of XCL1, a ligand specific to the receptor XCR1 on the surface of cDC1. Here, female C57BL/6 mice were selected for tumor inoculation and immunotherapy. Additionally, recognizing the complexity of cancer, this study explored the use of combination therapies, particularly the combination of cDC1-targeted DNA vaccine with the chemotherapy drug Gemcitabine (Gem) and the anti-PD1 antibody in a mouse lung cancer model. The study's findings indicate that fusion antigens with XCL1 effectively enhance both the immunogenicity and antitumor effects of DNA vaccines. Moreover, the combination of the cDC1-targeted DNA vaccine with Gemcitabine and anti-PD1 antibody in the mouse lung cancer model demonstrates an improved antitumor effect, leading to the prolonged survival of mice. In conclusion, this research provides important support for the clinical investigation of cDC1-targeting DNA vaccines in combination with other therapies.


Subject(s)
Cancer Vaccines , Lung Neoplasms , Vaccines, DNA , Animals , Female , Mice , CD8-Positive T-Lymphocytes , Dendritic Cells , Gemcitabine , Lung Neoplasms/therapy , Mice, Inbred C57BL , Vaccines, DNA/immunology , Vaccines, DNA/therapeutic use , Cancer Vaccines/immunology , Cancer Vaccines/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...